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Normal numbers 

Given an integer b > 1, a real number x is b-normal (or “normal base b”) if 
every m-long string of digits in the base-b expansion of x appears with 
limiting frequency b-m. 

Using measure theory, it is easy to show that almost all reals are b-normal.  
In fact, almost all reals are b-normal for all integer bases b > 1. 

These are widely believed to be b-normal, for all integer bases b > 1: 
π = 3.1415926535… 
e = 2.7182818284… 
sqrt(2) = 1.4142135623… 
log(2) = 0.6931471805… 
Every irrational algebraic number. 

But there are no normality proofs for any of these constants, not for any base 
b, nor are there any non-normality results. 

Until recently, normality proofs were known only for contrived examples such 
as Champernowne’s constant = 0.123456789101112131415… and 
equivalents in other bases. 
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A recent result for algebraic numbers 

If x is algebraic of degree d > 1, then its binary expansion through position n 
must have at least C n1/d 1-bits, for all sufficiently large n and some C that 
depends on x. 

Example:  The first n binary digits of sqrt(2) must have at least sqrt(n) 1-bits.  
In this case, the proof is easy – it follows by noting that the 1-bit count of 
the product of two integers is less than or equal to the product of the 1-bit 
counts of the two integers. 

A number of other related results are established in the paper below.  These 
results are still a far cry from full normality. 

DHB, J. M. Borwein, R. E. Crandall and C. Pomerance, “On the Binary Expansions of Algebraic Numbers,” 
Journal of Number Theory Bordeaux, vol. 16 (2004), pg. 487-518. 
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The Borwein-Plouffe observation 

In 1996, Peter Borwein and Simon Plouffe of SFU in Canada observed that 
the following well-known formula for log 2 

leads to a simple scheme for computing binary digits of log 2 at an arbitrary 
starting position (here {} denotes fractional part): 

log 2 =
∞∑

n=1

1
n2n

= 0.6931471805599453094172321214581765680755 . . .10

= 0.101100010111001000010111111101111101000111001111011 . . .2

{2d log 2} =

{
d∑

n=1

2d−n

n

}
+

∞∑

n=d+1

2d−n

n

=

{
d∑

n=1

2d−n mod n

n

}
+

∞∑

n=d+1

2d−n

n

The numerator in the first portion of the RHS can be computed very rapidly 
using the binary algorithm for exponentiation mod n. 
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Fast exponentiation mod n 

Problem: 
 What is 317 mod 10? 

Algorithm A: 
 317 = 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 x 3 = 129140163,  
so answer = 3. 

Algorithm B (faster): 
 317 = (((32)2)2)2 x 3 = 129140163, so answer = 3. 

Algorithm C (fastest): 
 ((((32 mod 10)2 mod 10)2 mod 10)2 mod 10) x 3 mod 10 = 3. 

Note that in Algorithm C, we never have to deal with integers larger than 81 
= (n - 1)2.   Thus it can be implemented using ordinary 64-bit integer 
arithmetic, even for very large n. 
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The BBP formula for π


In 1996, at the suggestion of Peter Borwein, Simon Plouffe used DHB’s 
PSLQ integer relation program to discover this new formula for π:   

π =
∞∑

n=0

1
16n

(
4

8n + 1
− 2

8n + 4
− 1

8n + 5
− 1

8n + 6

)

This formula permits one to compute binary (or hexadecimal) digits of π 
beginning at an arbitrary starting position, using a very simple scheme that 
can run on any system with standard 64-bit or 128-bit arithmetic. 

Recently it was proven that no base-b formulas of this type exist for π, 
except for when b is a power of two. 

1.  DHB, P. B. Borwein and S. Plouffe, “On the Rapid Computation of Various Polylogarithmic Constants,” 
Mathematics of Computation, vol. 66, no. 218 (Apr 1997), pg. 903-913. 
2.  J. M. Borwein, W. F. Galway and D. Borwein, “Finding and Excluding b-ary Machin-Type BBP Formulae,” 
Canadian Journal of Mathematics, vol. 56 (2004), pg 1339-1342. 
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Some other BBP-type formulas 

log
9
10

= −
∞∑

k=1

1
k10k

π2 =
9
8

∞∑

k=0

1
64k

(
16

(6k + 1)2
− 24

(6k + 2)2
− 8

(6k + 3)2
− 6

(6k + 4)2
+

1
(6k + 5)2

)

π2 =
2
27

∞∑

k=0

1
729k

(
243

(12k + 1)2
− 405

(12k + 2)2
− 81

(12k + 4)2
− 27

(12k + 5)2

− 72
(12k + 6)2

− 9
(12k + 7)2

− 9
(12k + 8)2

− 5
(12k + 10)2

+
1

(12k + 11)2

)

ζ(3) =
1

1792

∞∑

k=0

1
212k

(
6144

(24k + 1)3
− 43008

(24k + 2)3
+

24576
(24k + 3)3

+
30720

(24k + 4)3

− 1536
(24k + 5)3

+
3072

(24k + 6)3
+

768
(24k + 7)3

− 3072
(24k + 9)3

− 2688
(24k + 10)3

− 192
(24k + 11)3

− 1536
(24k + 12)3

− 96
(24k + 13)3

− 672
(24k + 14)3

− 384
(24k + 15)3

+
24

(24k + 17)3
+

48
(24k + 18)3

− 12
(24k + 19)3

+
120

(24k + 20)3
+

48
(24k + 21)3

− 42
(24k + 22)3

+
3

(24k + 23)3

)
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BBP formulas and normality 

Consider the general BBP-type constant 

α =
∞∑

n=0

p(n)
bnq(n)

where p and q are integer polynomials, deg p < deg q, and q has no zeroes 
for nonnegative arguments.  Let {} denote fractional part. 

In 2001, DHB and Richard Crandall proved that α is b-normal iff the 
sequence x0 = 0, and 

is equidistributed in the unit interval.  Here “equidistributed” means that the 
sequence visits each subinterval [c, d) with limiting frequency d - c.  

DHB and R. E. Crandall, “On the Random Character of Fundamental Constant Expansions,” Experimental 
Mathematics, vol. 10, no. 2 (Jun 2001), pg. 175-190. 

xn =
{

bxn−1 +
p(n)
q(n)

}
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Two specific examples 

Let {} denote fractional part, and consider the sequence x0 = 0, and 

xn =
{

2xn−1 +
1
n

}

Then log 2 is 2-normal iff this sequence is equidistributed in the unit interval. 

Similarly, consider the sequence x0 = 0, and 

xn =
{

16xn−1 +
120n2 − 89n + 16

512n4 − 1024n3 + 712n2 − 206n + 21

}

Then π is 16-normal (and hence 2-normal) iff this sequence is 
equidistributed in the unit interval. 
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A class of provably normal constants 

DHB and Crandall have also shown that an infinite class of mathematical 
constants is 2-normal, including 

α2,3 =
∞∑

n=1

1
3n23n

= 0.041883680831502985071252898624571682426096 . . .10

= 0.0ab8e38f684bda12f684bf35ba781948b0fcd6e9e0 . . .16

This constant was proven 2-normal by Stoneham in 1971, but we have 
extended this to the case where (2,3) are any pair (p,q) of relatively prime 
integers > 1.  We also extended this result to an uncountable class: 

α2,3(r) =
∞∑

n=1

1
3n23n+rn

Here rn is the n-th bit in the binary expansion of r in (0,1).  These constants 
are all distinct. 

DHB and R. E. Crandall, “Random Generators and Normal Numbers,” Experimental Mathematics, vol. 11, 
no. 4 (2002), pg. 527-546. 
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A “hot spot” lemma 

Given the real constant α, if there exists some B such that for every 
subinterval [c,d) of [0,1), 

then α is b-normal.   

In other words, if α is not b-normal, then there is some interval [c, d) that is 
visited 10 times too often by shifts of the base-b expansion of α; there is 
some other interval [c’, d’) that is visited 100 times too often; there is some 
other interval [c’’, d’’) that is visited 1000 times too often, etc. However, one 
cannot conclude that these intervals are nested. 

L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, 1974, pg. 77.  

lim sup
m≥1

#0≤j<m

(
{bjα} ∈ [c, d)

)

m(d− c)
≤ B
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A strong “hot spot” lemma 

Recently DHB and Michal Misiurewicz proved a stronger version of this 
result, using methods of ergodic theory:   

Let 0.x1x2…xn be the base-b expansion of x to position n.  If for every x in 
(0,1),  

then α is b-normal. 

In other words, if α is not b-normal, then there is at least one x in (0,1) such 
that shifts of the base-b expansion of α visit all sufficiently small digit 
neighborhoods of x too often, by an arbitrarily large factor. 

DHB and M. Misiurewicz, “A Strong Hot Spot Theorem,” Proceedings of the American Mathematical Society, 
vol. 134 (2006), no. 9, pg. 2495-2501.  

lim inf
n≥1

lim sup
m≥1

#0≤j<m

[
{bjα} ∈ [0.x1x2 . . . xn, 0.x1x2 . . . xn + b−n)

]

mb−n
< ∞
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Simple examples of “hot spots” 

Consider the rational fraction 1/28: 
   0.0357142857142857142857142857142857142857142857142857142857142857142857... 
Examine the sequence of shifts of its decimal expansion: 
   0.3571428571428571428571428571428571428571428571428571428571428571428571… 
   0.5714285714285714285714285714285714285714285714285714285714285714285714… 
   0.7142857142857142857142857142857142857142857142857142857142857142857142… 
   0.1428571428571428571428571428571428571428571428571428571428571428571428… 
   0.4285714285714285714285714285714285714285714285714285714285714285714285… 
   0.2857142857142857142857142857142857142857142857142857142857142857142857… 
   0.8571428571428571428571428571428571428571428571428571428571428571428571… 
This sequence visits each of the six points 1/7, 2/7, 3/7, …, 6/7 one-sixth of the time, 

in the limit, which, relative to the size a sufficiently small neighborhood around 
each of these points, is too often by an arbitrarily large factor.  Thus these six 
points are “hot spots” for 1/28.  Thus 1/28 is not a 10-normal number. 

In a similar way, the constant 1/10 + 1/104 + 1/109 + 1/1016 + 1/1025 + …  = 

   0.10010000100000010000000010000000000100000000000010000000000000010000000… 
is irrational but not 10-normal, since zero is clearly a “hot spot” for this constant. 
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The BBP sequence corresponding to α2,3 

It is fairly easy to show that the BBP sequence (zn) corresponding to  

is the following.  Note that each section is repeated three times, and the 
sequence evenly fills in the unit interval with all fractions of the form k 3-p. 

0, 0, 0,
1
3
,

2
3
,
1
3
,

2
3
,
1
3
,

2
3
,

4
9
,

8
9
,

7
9
,

5
9
,

1
9
,

2
9
, (repeated 3 times),

13
27

,
26
27

,
25
27

,
23
27

,
19
27

,
11
27

,
22
27

,
17
27

,
7
27

,
14
27

,
1
27

,
2
27

,
4
27

,
8
27

,
16
27

,
5
27

,

10
27

,
20
27

, (repeated 3 times), etc.

It is also easy to show that the sequence of shifted bits satisfies, for all n > 0, 

α2,3 =
∞∑

n=1

1
3n23n

|{2nα2,3}− zn| <
1
2n
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Proof that α2,3 is 2-normal 

Given any x in (0,1), let c = 0.x1x2…xn, and d = 0.x1x2…(xn+1).  Let m be any 
integer  > 22n, and let 3p such that 3p <= m < 3p+1.  Note that for j > 2n,         
[c - 1/(2j), d + 1/(2j)) is a subset of [c – 2-n-1, d + 2-n-1).  Since the length of 
this interval is 2-n+1, it contains at most 3p 2-n+1 + 1 instances  of k 3-p.  
Therefore


Thus by the hot spot lemma, α2,3 is 2-normal. 

See paper by DHB and Misiurewicz for full details. 

#0≤j<m

(
{2jα} ∈ [c, d)

)

m2−n
≤

2n + #2n≤j<m

(
zj ∈ [c− 2−n−1, d + 2−n−1)

)

m2−n

≤ 2n + 3(3p2−n+1 + 1)
m2−n

< 8
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α2,3 is not 6-normal 

It is also possible to establish non-normality results for α2,3 in certain number 
bases, such as base 6.  Note that we can write 

The first portion of this expression is zero, since all of the terms in the 
summation are zero.  When n = 3m, the second portion is, very accurately, 

Thus the base-6 expansion of α2,3 has long stretches of zeroes beginning at 
positions 3m + 1.  This observation can be fashioned into a rigorous proof of 
non-normality. 

DHB, “A Non-Normality Result,” manuscript, Aug 2007, http://crd.lbl.gov/~dhbailey/dhbpapers/alpha-6.pdf. 

{6nα2,3} =






!log3 n"∑

m=1

3n−m2n−3m




 +






∞∑

m=!log3 n"+1

3n−m2n−3m




 .

{63m

α2,3} ≈
(

3
4

)3m

3m+1
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A pseudorandom number generator 
based on the binary digits of α2,3 

Given a seed q in the range 333 + 100 < q < 253, use the first line to compute 
x0, and use the second line to compute all successive iterates: 

Divide the results by 333 to obtain pseudorandom 64-bit floating-point iterates 
in (0,1).   

This generator has several desirable properties: 
•   Iterates contain successive 53-bit sections of the binary digits of α2,3.  
•   It is not subject to power-of-two stride problems that plague other schemes. 
•   It passes all standard tests for randomness. 
•   It is well-suited for parallel processing – each individual processor can 
quickly jump to its own starting point in the sequence. 
•   Efficient implementations are as fast as several other widely used schemes. 

DHB, “A Pseudo-Random Number Generator Based on Normal Numbers,” Dec 2004, 
http://crd.lbl.gov/~dhbailey/dhbpapers/normal-random.pdf. 

x0 = (2q−333
· !333/2") mod 333

xk = (253 · xk−1) mod 333


